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1. 

A straight beam, essentially characterized by its mass and bending stiffness, represents one
of the most fundamental modelling artefacts in structural engineering, and it remains a
basic building block of the more complex matricial formulations of large structures so
commonly used today as powerful computers have become available. A great variety of
structural problems may be treated with beams as long as boundary conditions are
appropriately defined. Free–free boundary conditions, where the ends of the beams are free
from shear forces and bending moments, are probably less commonly used than more
restrictive boundary conditions such as pinned, clamped etc. They do occur in some
engineering applications, however, such as the towing of large and stiff marine pipelines
(see, e.g., Nihous [1]). In such cases, a fairly large axial tension is also necessary to ensure
an optimal alignment between pipeline, current and waves.

Investigation of the behavior of beams, and the determination of vibratory mode shapes,
has been textbook material for some time (see, e.g., Timoshenko et al. [2], Gorman [3] and
Blevins [4, 5]). The particular study of free–free beams under axial loads appears to have
been initiated by Shaker [6], followed by more work by Bokaian [7, 8], until the recent
investigation by Liu et al. [9]. These last authors numerically solved the characteristic
equation of the problem for a wide range of arbitrary axial loads, and discovered that the
lowest non-zero natural frequency had been hitherto overlooked in the case of tensile
loads.

The intent of this note is to establish that the problem of a free–free beam under axial
loads is continuous in the two well-known limits of a ‘‘pure’’ beam (no axial load) and
a ‘‘pure’’ cable (no bending stiffness or, equivalently, infinitely large tension). This
continuity analysis is meant to provide physical arguments to explain previous results, such
as the discovery by Liu et al. [9], and to derive approximation formulas more physically
grounded than mere curve fits, for engineering purposes. A first section briefly formulates
the complete modal boundary value problem (BVP). The limiting BVPs of a ‘‘pure’’
free–free straight beam and a ‘‘pure’’ free–free straight cable are then presented, with their
well-known solutions. The study then proceeds to establish that the solutions of the
complete BVP converge, in the two limits of small and large axial loads, to the solutions
of the limiting BVPs. Finally, the simple approximation formulas obtained in the
continuity analysis are evaluated for accuracy.

2.   

The full boundary value problem for the transverse motions y(x, t) of a free–
free straight beam under axial tension, BVP (I), is well-known (see, e.g., Blevins [5]), and
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is expressed below:

m
12y
1t2 +

EI
L4

14y
1x4 −

T
L2

12y
1x2 =0,

12y
1x2 (0)=

12y
1x2 (1)=0, (1a)

13y
1x3 (0)−

TL2

EI
1y
1x

(0)=
13y
1x3 (1)−

TL2

EI
1y
1x

(1)=0, (1b)

The beam length L has been used to non-dimensionalize the axial co-ordinate x, and
transverse displacement function y(x, t); m represents the mass per unit length, EI the
bending stiffness and T a uniform axial load taken positive when tensile. Evidently, t is
the time variable.

With a zero right side, the above partial differential equation is valid for ‘‘free
vibrations’’, i.e., in the absence of any ‘‘external’’ loading, or ‘‘forcing function’’, other
than the specified axial force T (here, the meaning of ‘‘free’’ must be distinguished from
that used in defining free end conditions!). The first set of end conditions (1a) represents
vanishing bending moments, whereas the second set (1b) is the expression of vanishing
shear forces.

The traditional method of solution is to separate variables x and t by seeking solutions
of the form y(x, t)= y(x)f(t), where the notation y has been extended to the spatial
function, or mode shape, with no loss of generality. The mode shape equation thus
obtained is

14y
1x4 − p2g

12y
1x2 −Cy=0, (1c)

where g is a non-dimensional load parameter defined as TL2/EIp2. C is a real constant,
and y must also satisfy boundary conditions (1a) and (1b).

The temporal function f(t) is vibratory, with its corresponding (natural) frequency v,
if C is strictly positive; in those cases, C is written as b4, where b4 =mv2L4/EI. The
definition of b4 is an expression of the relationship between temporal and spatial
components of the complete solution. Although the literature primarily focuses on
vibratory mode shapes because of their number and physical importance, the widely used
solution technique known as modal expansion, described for example in Timoshenko et al.
[2] or Blevins [3], must use the complete set of mode shapes, including those corresponding
to non-vibratory time functions if they exist.

Thus, when C=0, f(t) is a linear function of time; yet, it is well-known that the mode
shape BVP admits the normalized solutions yc =1 for all values of g, and the buckling
function y(x)= sin (px) for g=−1.

On the other hand, little attention seems to have been given to possible mode shapes
corresponding to strictly negative values of C, when f(t) is an exponential function of time.
It is probably anticipated that such mode shapes do not exist. A study is currently under
way to investigate the question of non-vibratory mode shapes for free–free straight beams
under axial loads. In the more traditional context of straight beams without axial loads,
the proof that no mode exists for CQ 0 is somewhat easier: the procedure for free–free
boundary conditions is summarized in Appendix A.

In what follows, attention is restricted to the modal BVP, or some of its limiting forms,
when Ce 0. Since several authors, from Shaker [6] to Liu et al. [9], have presented the
solution of this modal BVP in great detail, a superfluous repetition of the steps leading
to that solution will be avoided henceforth, and only results will be recalled when
necessary. In addition, the indexing conventions for natural frequencies and mode shapes
are motivated by the continuity analysis, and may occasionally appear different from other
authors’ choice.



   112

3.        

3.1. Free–free beam without axial load (BVP II)
The reduced BVP obtained by setting T=0 in BVP (I) has been textbook material

for a long time (see, e.g., Blevins [5]). In this case, free–free boundary conditions are
unique in as much as they result in the existence of two distinct rigid-body mode
shapes, both corresponding to a zero natural frequency (i.e., rigid-body solutions are
not vibratory); adopting the normalized convention y(0)=1, these rigid body mode
shapes are

yc(x)=1, y0(x)= ax+1 (a$ 0).

Because these two modes share the same natural frequency, they are not necessarily
orthogonal; thus, in general:

g
1

0

yc(x)y0(x) dx$ 0.

However, the arbitrary slope a may be chosen such that the above integral vanishes,
although there is no mathematical requirement to do so; in this case:

y0(x)=1−2x.

The non-zero natural frequencies li(i=1, 2, . . . ), corresponding to truly vibratory
mode shapes (l4 =mv2L4/EI), satisfy the characteristic equation [5]:

1−cosh (li) cos (li)=0, i=1, 2, . . . . (2)

For the related mode shapes, one has

yi(x)= 1
2{cosh (lix)+ cos (lix)+B(sinh (lix)+ sin (lix))},

where the coefficient B satisfies

{cosh (li)− cos (li)}+2B{sinh (li)− sin (li)}=0.

3.2. Free–free cable (BVP III)
A cable is understood as a beam of vanishing bending stiffness or, equivalently,

subjected to very large tensions. In this case, the differential equation (1) degenerates
from the fourth to the second x-order. Therefore, the resulting BVP only requires two
end boundary conditions. We argue here that the zero bending moment end
conditions become irrelevant as bending stiffness vanishes, and that one should only
retain

1y
1x

(0)=
1y
1x

(1)=0.

The straight cable problem thus obtained is also standard textbook material [5], except
that solutions are usually given for the more practical fixed end conditions y(0)= y(1)=0.
The difference in end conditions does not affect the natural frequencies mi(i=0, 1, . . . , ),
such that m4 =mv2L4/EI, but the mode shapes are different, although still purely
trigonometric. Aside from the non-vibratory solution corresponding to a constant mode
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shape, one can easily determine that

mi = g1/4pzi+1, yi(x)= cos {(i+1)px}, i=0, 1, . . . .

4.        

The solution of the full boundary value problem BVP (I) was first attempted by Shaker
[6]. Recently, Liu et al. [9] discovered that Shaker omitted the lowest non-zero natural
frequency and its related mode shape. These and other authors numerically solved the
characteristic equation; that is, the relationship between non-dimensional time frequencies
b2 and their corresponding non-dimensional modal ‘‘wavenumbers’’ a1 and a2. This
equation in its full form is repeated below:†

2b6{1−cosh (a1) cos (a2)}− gp2(g2p4 +3b4) sinh (a1) sin (a2)=0, (3)

where

a1 = {gp2/2+zg2p4/4+ b4}1/2, a2 = {−gp2/2+zg2p4/4+ b4}1/2.

Strictly speaking, the characteristic equation (sometimes called the transcendental
equation) is defined for b$ 0 and thus excludes rigid body modes, although it may
coincidentally be satisfied by a rigid body mode.

Also recall that, for b$ 0, the mode shapes are given (prior to normalization) by

y(x)=A(cosh (a1x)+ (a2
1/a2

2) cos (a2x))+B(sinh (a1x)+ (a2/a1) sin (a2x)), (4)

where the two coefficients A and B are related by

Aa3
1{cosh (a1)− cos (a2)}+B{a3

1 sinh (a1)− a3
2 sin (a2)}=0, (5)

Of interest below is the continuity of the full problem in the two following limits: (a)
when tension vanishes—in other words, the solutions of BVP (I) should converge toward
those of BVP (II) as g tends to zero; (b) when the bending stiffness of the beam
vanishes—in other words, the solutions of BVP (I) should converge toward those of BVP
(III) as g tends to infinity.

The rigid body solution corresponding to a constant mode shape and a zero natural
frequency satisfies BVP (I) for all axial loads, and therefore never poses any continuity
problem.

4.1. Lowest non-zero natural frequency for small axial loads
The continuity of the solutions of equation (2) corresponding to bi such that ie 1 is

an easy matter, since setting g=0 in the characteristic equation (3) effectively yields
equation (2), the characteristic equation of the limiting problem. Blevins [5] noted that for
some boundary conditions other than free–free, the expression for the natural frequencies
bi(ie 1) with non-zero tensions is quite simple (see, e.g., equations 8–20, 8–21 and 8–22
in reference [5]). For boundary conditions such as free–free, he then proposed equations
8–22 as an approximation, which is allegedly accurate within 1% as long as the magnitude
of the axial load does not exceed the critical (buckling) value (=g=Q 1). In Liu et al.’s
notation, Blevins’ approximation is given below:

bi 1 li61+ g
l2

1

l2
i7

1/4

, for ie 1, =g=Q 1. (6)

†The notation of Liu et al. [9] is used as much as possible. k2, defined as TL2/EI, has been replaced, however,
by p2g to avoid possible confusion over the fact that, by definition, k2 is positive for tensile axial loads, but negative
for compressive axial loads.
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The limiting process of setting g=0 in equation (3), as well as the above formula, fail
to account for the lowest non-zero natural frequency b0, which was only recently
discovered by Liu et al. [9]. An ‘‘inventory’’ of natural frequencies leaves only the
possibility that the mode associated with b0, a rightful solution of equation (3),
‘‘degenerates’’ into the second (non-constant) rigid body mode satisfying BVP (II) when
the tension vanishes. In order to establish this fact, we make the a priori assumption that
when =g= is small, b is small and of order zp=g=1/4. The validity of this assumption will be
examined a posteriori; a1 and a2 are then expanded to order b3:

a1 = b+ gp2/4b+O(b4), a2 = b− gp2/4b+O(b4).

These values are now substituted into the characteristic equation (3), where to retain terms
of order b10, it is sufficient to develop the transcendental functions in equation (3) as
follows:

1−cosh (a1) cos (a2)= b4/6− gp2/2+O(b5), sinh (a1) sin (a2)= b2 +O(b3).

The characteristic equation then yields

b4 =12p2g, i.e., b0 = (12)1/4zpg1/4. (7)

Equation (7) is the continuity formula for the lowest non-zero natural frequency b0 of a
free–free beam as tension vanishes. Since b4 is positive, it can be verified that only tensile
axial loads (gq 0) correspond to the existence of a vibratory mode shape of frequency b0.
Moreover, since (12)1/4 1 1·861, our original assumption that b and zp=g=1/4 be of the same
order of magnitude, when both are small, is well satisfied. One can also see that the mode
corresponding to b0 is essentially ‘‘tensile’’, with b0 1 3·30g1/4, since the first solution of the
limiting (‘‘cable’’) boundary value problem BVP (III) is m0 = pg1/4.

We may now turn our attention to the continuity of the mode shape y0(x). With equation
(7) being satisfied, the expansion of a1 and a2 to order b4 becomes

a1 = b+ b3/48+O(b4), a2 = b− b3/48+O(b4).

Taking the arbitrary constant A equal to 1/2 in equation (4), while keeping only terms up
to order bx in the brackets containing functions of x, we easily obtain

y(x)=1+2Bbx+O(b2x2).

In the above, the second term is only necessary in as much as B is not of order b or smaller.
From equation (5), the expression for B is

B=−
cosh (a1)− cos (a2)

2{sinh (a1)− (a3
2/a3

1) sin (a2)}
.

The leading term for the numerator is simply b2. In expanding the denominator to order
b3, it is important to develop a3

1 and a3
2 to order b5, so that the ratio a3

2/a3
1 is correctly

(1− b2/8); on the other hand, we have

sinh (a1)= b+9b3/48+O(b4), sin (a2)= b−9b3/48+O(b4),

Thus, the leading term of B is easily determined to be −1/b, and the mode shape y0(x)
is given by

y0(x)=1−2x+O(b2x2). (8)

As discussed earlier, the second (non-constant) rigid body mode shape obtained when
solving BVP (II) could theoretically be any straight line, and thus was not systematically
orthogonal to the constant rigid body mode shape. With the normalization
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conditions y(0)=1, it was seen that if one selected the particular straight line orthogonal
to y(x)=1, one obtained y0(x)=1−2x. With the onset of a small axial tensile force, not
only b0 becomes differentiated from 0, but the nearly linear mode shape given by equation
(8) is the straight line orthogonal to all other mode shapes with distinct natural frequencies,
as mathematical theory demands (see, e.g., Timoshenko et al. [2] and Liu et al. [9]).

4.2. The case of large tensions
For these cases or, equivalently, for vanishing bending stiffness, the behavior of the

vibrating structural member is expected to approach that of a cable. Consequently, we
make the a priori assumption that when g is large, b is large and of order g1/4zp.

It is clear that with g and b both large, a1 is a very large number and the hyperbolic
sine and cosine in equation (3) will be about equal to exp (a1)/2. On the other hand, b6

is much smaller that (p2g)3, a term of order b12 under our assumption. It follows that the
characteristic equation can only be satisfied if we have

sin (a2)=0.

The non-zero solutions of the above equation are immediately available as

a2 = np, n=1, 2, . . . ;

recall that the characteristic equation is defined for non-zero natural frequencies b, which
also implies that a2 must be non-zero.

Using the definition of a2, the above equation straightforwardly yields

bi = g1/4pzi+161+
(i+1)2

g 7
1/4

, i=0, 1, 2, . . . .

Note that n, starting from 1, has been redefined as i, starting from 0, to be consistent with
Liu et al.’s definition of the lowest non-zero frequency as b0.

The expression for bi can be formally recast in a manner somewhat similar to equation
(6):

bi = mi61+
1
g

m4
i

m4
07

1/4

, i=0, 1, 2, . . . . (9)

As g tends to infinity, the above formula clearly shows continuity between boundary value
problems (I) and (III).

Strictly speaking, the above derivation relied on the a priori assumption that b was
of order g1/4zp. The result obtained subsequently shows that our assumption is
acceptable as long as zp(i+1){1+ (i+1)2/g}1/4 is of order one, or, say, less than 10. In
other words, the following approximate condition should hold:

(i+1)z1+ (i+1)2/g�100/p.

This condition is by no means very restrictive, especially for the lower natural frequencies
(low indices i). It confirms that for a given value of g, a beam will first have a cable-like
behavior in the lower frequency mode shapes. Moreover, if the above condition is not
satisfied, the analysis could be repeated with a different a priori assumption on the order
of magnitude of b, and the results should not be fundamentally different.

We will now examine the continuity of the mode shapes. Retaining only the leading
terms in equation (5) leads to B=−A. It follows that the mode shapes described by
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equation (4) are given approximately by

yi(x)= (a2
1/a2

2) cos (a2x).

Imposing the normalization conditions yi(0)=1, we have

yi(x)= cos (a2x), i.e., yi(x)= cos {(i+1)px}, i=0, 1, 2, . . . .

These are precisely the mode shapes obtained when solving BVP (III). Once again, the

T 1

b0 and approximating expressions

b0

Exact b0 b0

g (numerical) g m0 g equation (7) g equation (9)

0 0 0 0 0 0 0 3·1415927
0·1 1·8529856 0·1 1·766647402 0·1 1·855112497 0·1 3·21734809
0·2 2·2011743 0·2 2·10090966 0·2 2·206112981 0·2 3·288101313
0·3 2·4334568 0·3 2·325038736 0·3 2·441465348 0·3 3·354561182
0·4 2·6123106 0·4 2·498416716 0·4 2·623525253 0·4 3·417290412
0·5 2·7595459 0·5 2·64175404 0·5 2·774040211 0·5 3·47674384
0·6 2·8855982 0·6 2·764952607 0·6 2·903407963 0·6 3·533294804
0·7 2·9963464 0·7 2·873587257 0·7 3·017482507 0·7 3·587253842
0·8 3·0954585 0·8 2·971134935 0·8 3·119914897 0·8 3·638882274
0·9 3·1853907 0·9 3·05992306 0·9 3·213149099 0·9 3·688402259
1 3·267875 1 3·1415927 1 3·298908357 1 3·736004391
5 4·80412 5 4·697776815 5 4·933018591 5 4·916858292

10 5·6693 10 5·586629613 10 5·866380806 10 5·721343863
50 8·388 50 8·353959783 50 8·772285389 50 8·395419914

100 9·95618 100 9·934588413 100 10·4320642 100 9·959332286
500 14·8627 500 14·85567467 500 15·59957449 500 14·86309695

1000 17·6707 1000 17·66647402 1000 18·55112497 1000 17·67088898

T 2

Relative errors for b0 approximations

g (b0 − m0)/b0 g {b0(7)− b0}/b0 g {b0(9)− b0}/b0

0·1 0·0465941 0·1 0·001147822 0·1 0·736304961
0·2 0·0455505 0·2 0·002243671 0·2 0·49379418
0·3 0·0445531 0·3 0·003291038 0·3 0·37851687
0·4 0·0435989 0·4 0·004293005 0·4 0·308148589
0·5 0·0426852 0·5 0·005252426 0·5 0·259897087
0·6 0·0418096 0·6 0·006171952 0·6 0·224458352
0·7 0·0409696 0·7 0·007053973 0·7 0·197209338
0·8 0·0401632 0·8 0·007900732 0·8 0·175555176
0·9 0·0393885 0·9 0·008714284 0·9 0·157912045
1 0·0386436 1 0·009496494 1 0·143251927
5 0·0221358 5 0·026830843 5 0·023467002

10 0·0145821 10 0·034762811 10 0·009179945
50 0·0040582 50 0·045813709 50 0·000884587

100 0·0021687 100 0·04779787 100 0·000316616
500 0·0004727 500 0·049578777 500 2·67076E−05

1000 0·0002392 1000 0·049824001 1000 1·06948E−05
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Figure 1. Small-tension approximations of the lowest natural freuqncy. r, Exact (numerical, Liu et al. [9]);
——, equation (7); – – –, m0.

continuity of BVP (I) for large values of g removes any doubt about the definition of
free–free boundary conditions for a cable: the argument proposed earlier is confirmed that,
of the four boundary conditions necessary to solve for BVP (I), only the two zero-shear
end conditions (1b) should be retained as the bending stiffness of the beam vanishes, and
the order of the beam motion differential equation drops from the fourth to the second
order (in x). In other words, free–free cable mode shapes have zero end slopes.

5.    b0

The existence of b0 was only recently established by Liu et al. [9] through an improved
numerical solution of equation (3). While examining the theoretical question of the
continuity of BVP (I), as the axial load tends to either zero or infinity, a number of very
simple approximate expressions for the fundamental frequency b0 were derived in the case
of tensile loads (b0 does not exist for compressive axial loads).

Equations (7) and (9) provide an easy way to evaluate b0, in the respective limits of small
and large tensions, while avoiding the numerical difficulties associated with the hyperbolic
functions in equation (3). Moreover, the fundamental frequency for BVP (III), m0, was
observed to deviate little from b0, even for small tensions: it is trivial to show that the
maximum relative error committed when replacing b0 by m0 is (1−zp/121/4)1 4·77%
when g tends to zero. Reciprocally, the small-tension approximation given by equation (7),
written b0 (7), remains relatively close to b0 for large tensions: it can be shown that the
maximum relative error committed when replacing b0 by b0(7) is (121/4/zp−1)1 5·01%
when g tends to infinity; since b0 becomes large, however, the absolute error also grows
in this limit.

The accuracy of the various approximations of b0 available through equations (7), (9)
and m0 in Tables 1 and 2 is quantified. The best small-g approximations are graphically
illustrated in Figure 1.

6. 

The present study has verified that the modal boundary value problem for a vibrating
free–free straight beam subjected to a uniform axial load is continuous in two well-known
limits: first, when the axial load vanishes, and second, when the axial load becomes very
large (vanishing bending stiffness). In both cases, the proof relied on a careful derivation
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of the limits of the characteristic equation, and resulted in very simple and accurate
approximating formulas for the lowest non-zero natural frequency.

In the large axial load limit, the BVP for a cable is ‘‘recovered’’ if one defines a free–free
cable as having zero slopes, i.e., vanishing shear, at the ends.

In the small axial load limit, it was confirmed that only tensions give rise to the lowest
non-zero frequency mode numerically discovered by Liu et al. [9]. As tension vanishes, this
mode shape tends to the non-constant rigid body solution of limiting BVP (II),
y(x)=1−2x, which is no longer vibratory, but remains orthogonal to all other modes.
This orthogonality property is preserved in the limiting process; by contrast, a solution
of BVP (II) alone yields an indeterminate slope for the non-constant rigid body solution.

This work is complete in the context of vibratory modes. On the other hand, the lack
of a natural frequency for small compressive loads, which would correspond to a mode
converging to y(x)=1−2x as the axial compression vanishes, leaves the overall
continuity analysis somewhat incomplete. Work is currently under way to investigate
time-exponential (non-vibratory) modes in the presence of axial loads, and it is expected
that results from this on-going work will shed some light on the question.
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 :    -  - (CQ 0) 

   –      

The BVP for the time-exponential mode shapes of a free–free straight beam without
axial load is written below:

14y
1x4 −Cy=0 (CQ 0),

12y
1x2 (0)=

13y
1x3 (0),

12y
1x2 (1)=

13y
1x3 (1)=0. (A1–A3)

This BVP is formally the same as BVP (II), except for the sign of the constant C, which
corresponds here to time-exponential modes (these modes are not vibratory if they exist).
The different sign for C results in a different set of four fundamental functions satisfying
equation (A1); instead of being a linear combination of cosh, sinh, cos and sin, the general
solution of equation (A1) may be written

y(x)=A eax cos (ax)+B eax sin (ax)+C e−ax cos (ax)+D e−ax sin (ax),
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where A, B, C and D are constants, and a=(−C)1/4/z2. Since CQ 0, only values of a
such that aq 0 are admissible.

Substituting the above general solution into the boundary conditions (A2) at x=0
yields

D=B, C=A−2B. (A4, 5)

Repeating the procedure at x=1, we further obtain

−A ea sin (a)+B ea cos (a)+C e−a sin (a)−D e−a cos (a)=0, (A6)

−A ea{sin (a)+ cos (a)}+B ea{cos (a)− sin (a)}+C e−a{cos (a)− sin (a)}

+D e−a{sin (a)+ cos (a)}=0. (A7)

For a non-trivial solution to exist, for which A, B, C and D are not all zero, the
determinant made up with the coefficients of these constants in equation (A4) through
(A7), must vanish. The simple form of equation (A4) and (A5) lends itself to substitution,
and after some elementary algebra, the zero-determinant requirement reduces to

sinh2 a−sin2 a=0. (A8)

The above result represents the characteristic equation of the BVP formulated in Equation
(A1)–(A3); it is the equivalent to equation (2) when C is negative. It can be seen, however,
that no strictly positive value of a satisfies equation (A8). Therefore no mode shape y(x)
exists for a free–free straight beam when the corresponding time dependence is exponential
(CQ 0) rather than trigonometric (Cq 0). A similar proof can easily be established for
a straight beam subjected to different boundary conditions.


